Requirement-Based Training Development and Pedagogical Aspects for Teaching Automation 4.0. Case study: "Erasmus+ ETAT Project" © 2022 by Felipe Mateos, Reyes Poo, Antonio Robles and José A. Sirgo (Automatic and System Engineering Area - University of Oviedo, Spain) is licensed under CC BY-NC-SA 4.0

Requirement-Based Training Development and Pedagogical Aspects for Teaching Automation 4.0. Case study: "*Erasmus+ ETAT Project*"

P3 - UNIOVI Team

Felipe Mateos, Reyes Poo, Antonio Robles y José A. Sirgo

Co-funded by the Erasmus+ Programme of the European Union

7-8 June, 2022 / European Annual EduNet Conference 2022, Paris

International Education Network – a PHOENIX CONTACT Initiative

Requirement-Based Training Development and Pedagogical Aspects for Teaching Automation 4.0. Case study: "*Erasmus+ ETAT Project*"

- Introduction: ETAT Project
- Methodology: ETAT Didactic Approach
- Preliminary Data from ETAT Project
- Procedure for Didactic Modules Definition
- Next Steps in ETAT Project
- Conclusions

International Education Network – a PHOENIX CONTACT Initiative

Project Duration

Project start: 2020 Project duration: 3 years

Funding

ETAT is an Erasmus+ Project. It is supervised by EAECA and supported by the European Union with about 1 million Euros.

Project coordination

Coordinator: Christian Madritsch CARINTHIA UNIVERSITY OF APPLIED SCIENCES

Fachhochschule Kärnten (University of Applied Sciences Carinthia) Europastraße 4, 9524 Villach Austria

Thai Co-Coordinator: Prajaks Jitngernmadan

Faculty of Informatics, Burapha University 169 Longhard Bangsaen Rd., Saensook, Muang, Chon Buri, 20131 Thailand Email: etat.erasmus@gmail.com Web: http://etat-erasmus.com

Project Partners

U. PORTO

🗄 S T U

SLOVAK UNIVERSITY OF

TECHNOLOGY IN BRATISLAVA

Freie Universität Bozen

Università Lieda de Bulsan

UNIDZ Libera Universtà di Bolzano

Country Universit

Program

Country Universit

CARINTHIA UNIVERSITY OF APPLIED SCIENCES

Universidad de Oviedo

EDUNET WORLD

- ASSOCIATION-

Rajamangala University

of Technology Tawan-ok

Co-funded by the Erasmus+ Program of the European Union

KMUTNB

EEC

ETAT Education & Training for Automation 4.0 in Thailand

Sustainable qualification for the Thailands Eastern Economic Sector

Since 2018, Thailand has been undergoing a major transformation process. The result of this transformation process will be Thailand 4.0, characterized by a digitized, integrated economic and social system and advanced infrastructure.

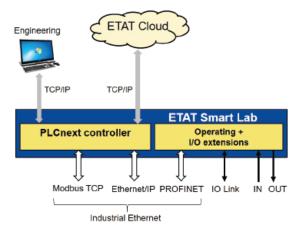
A key component of Thailand 4.0 is the Eastern Economic Corridor (EEC), an area of more than 13,000 square kilometers spanning the three provinces of Chonburi, Rayong and Chachoengsao southeast of Bangkok.

The focus of economic development in the EEC is on digital industries, electronics, robotics, aviation and automotive engineering, among others. The technologies used are intended to implement the principles of Industry 4.0. The close linking of information technology with classic automation technologies in the sense of a digital transformation of Industrie 4.0 (Automation 4.0) is of particular importance for the efficient development of the EEC.

An essential basis for the implementation of the EEC project is the availability of highly qualified specialists who can develop, operate and maintain the corresponding production, manufacturing and logistics technologies. In this context, the educational institutions in the EEC, especially the universities, play a central role in the qualification of skilled workers for Thailand 4.0.

Project Focus

The ETAT project focuses on strengthening technical qualifications at Thai universities in the field of Industry 4.0, industrial automation and smart production, with the aim of improving graduate employability and lifelong learning (LLL) by introducing European educational standards using practical examples.

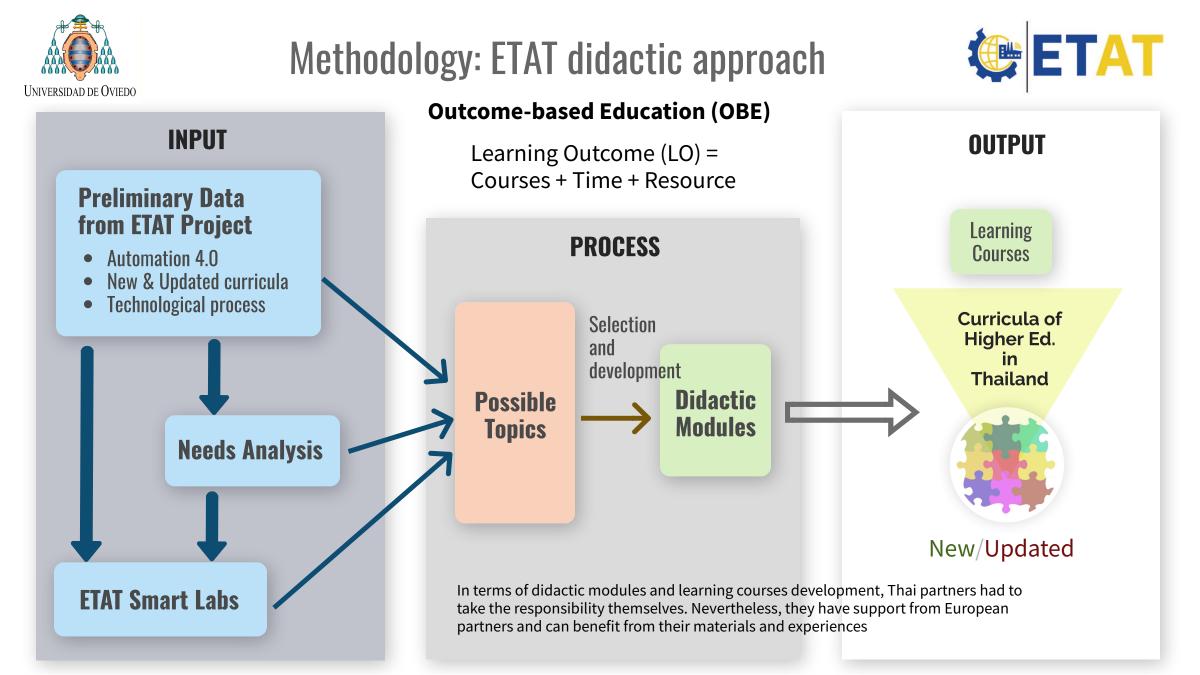

To achieve this, 6 European partner universities are working together with 6 Thai universities and the Eastern Economic Corridor – Human Resource Development Centre (EEC-HDC) in different subprojects.

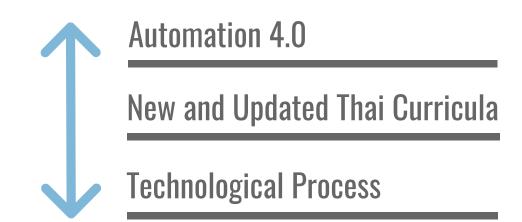
Specific Aims

- Modernization of Higher Education in Thailand based on the experience of European countries;
- Increase the employment rate of university graduates and implement the concept of Life-Long learning with the help of special training modules in the field of industrial automation;
- Development of partnerships with enterprises;
- Improve the quality and relevance of Higher Education in Thailand in the field of industrial automation;

Outcomes

- Establishment of 6 certified ETAT Training Centers at partner universities, which will be equipped with 24 special training places (respectively 4 ETAT Smart Labs per Thai university; technology by Phoenix Contact);
- Establishment of a platform for distance learning and cooperation between the partners for providing
 E-Learning & Cloud-based learning courses and for exchange of didactical documents and information;
- Practice-oriented qualification in the subject area of Industry 4.0 for 1000 students within 5 years after Establishment of the ETAT Training Centers;




Various learning panels assemble into a multifunctional ETAT Smart Lab core.

These first three stages provide the starting information for the development of the procedure that has been followed up to the detailed definition of several didactic modules. They include theoretical, practical and assessment materials necessary for the modernisation of the curricula.

International Education Network – a PHOENIX CONTACT Initiative

7-8 June, 2022 / European Annual EduNet Conference 2022, Paris

Automation 4.0

First, there was the need to identify relevant areas and new trends in the field of automation (\rightarrow Industry 4.0 \rightarrow Automation 4.0)

Based on the requirements that Thai partners stated in the project applications, the essential Automation 4.0 topics for them were:

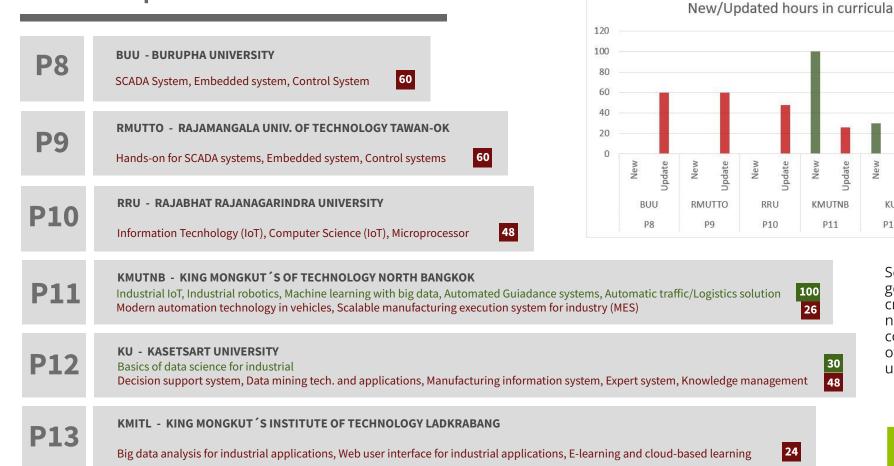
- Cyber-physical Systems an IIoT
- Advanced PLC programming

- Robotics
- HMI Systems

Feedback Control Technology

Big Data Analysis

These preliminayry requirements will be then combined with Needs Analysis research and they will reveal the total requirements of the relevant stakeholders



International Education Network – a PHOENIX CONTACT Initiative

New and Updated Thai Curricula

Secondly, it has been gathered general information on newly created courses, or courses in need of updating, corresponding to the syllabus of certain degrees an the Thai universities

Update

New

KU

P12

Update

New

KMITL

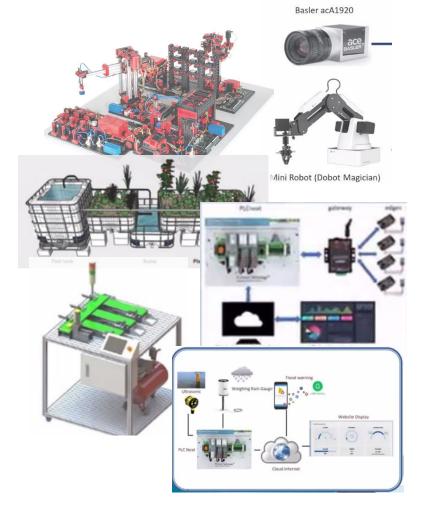
P13

Update

Edu Net

International Education Network – a PHOENIX CONTACT Initiative

June 7-9, 2022 / European Annual EduNet Conference 2022, Paris



Technological Process

Third, it is a collection of specialization/application fields for each Thai partner, which are required for the definition of a real (process) on which develop practical applications.

Each Thai partner requires different Real/Simulation Process Model according to the expertise and nearby industries:

- Smart Factory (BUU)
- Smart City & Home (KMITL, KU)
- Agriculture / Smart Farming (RRU)
- Robotics (RMUTTO)
- Logistics, Traffic, Energy & Environment (KMUTNB)

These previous three stages provide the starting information for the development of the procedure that has been followed up to the detailed definition of several didactic modules. They include theoretical, practical and assessment materials necessary for the modernisation of the curricula.

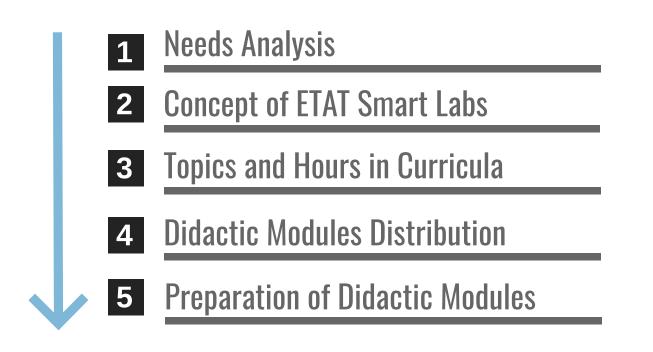
Needs Analysis

Concept of ETAT Smart Labs

Topics and Horus in Curricula

Didactic Modules Distribution

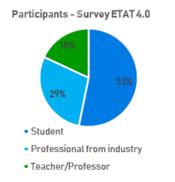
Preparation of Didactic Modules

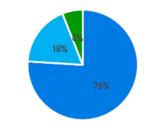


International Education Network – a PHOENIX CONTACT Initiative

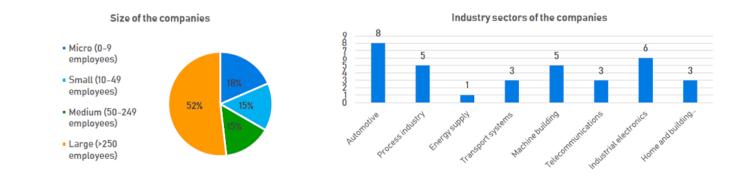
These previous three stages provide the starting information for the development of the procedure that has been followed up to the detailed definition of several didactic modules. They include theoretical, practical and assessment materials necessary for the modernisation of the curricula.

International Education Network – a PHOENIX CONTACT Initiative




1 Needs Analysis (Sample overview)

A total of 94 participants took part at this survey:


- 50 of the participants were students from university in the greater Bangkok area,
- 17 of the participants were teachers/professors from Thai universities at Bangkok and
- 27 participants were professionals from Thai industry

Student level

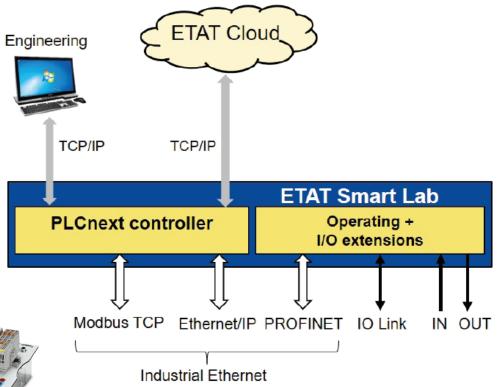
Bachelor Master Research Doctorate

Needs Analysis (Technical features)

1 Needs Analysis (Teaching possibilities)

- Needs Analysis (Some problems)
 - Specialists at the Thai enterprises and students of technical topics have the **lack of knowledge in Automation 4.0** and at the universities, it lacks of modern equipment.
 - Demand of opening of the **hands-on training centres** in the profiling universities of the EEC.
 - Lack of didactical materials and knowledge of the Thai university staff members in Industry 4.0 automation technologies widely used in EU countries.
 - Modernization and reform of higher education in technical subject.
 - Curricula in Thai HEI in industrial automation have lack of hands-on trainings and do not include the application of practice-oriented and work-oriented **ICT technology in Automation Engineering**.
 - Lack of capacities to **translate the teaching materials**, provided by the EU partner universities to the national languages.

Concept of ETAT Smart Labs


The goal was to build a modular and flexible system where the educational requirements of Industry 4.0 could be implemented. This system was named ETAT Smart Lab (ESL). It was designed having in mind the most voted technologies in Needs Analysis.

One of the objectives of ETAT project is to stablish one ETAT training centre at each partner Thai university. Each training centre will be composed of 4 ESL and a specific technological process.

Various learning panels assemble into a multifunctional ETAT Smart Lab core.

7-8 June, 2022 / European Annual EduNet Conference 2022, Paris

3

Procedure for Didactic Modules Definition

Topics and Hours in Curricula

Teaching needs are different in Thai university partners... Some courses are more oriented to Computer Science, others to Data Management and other ones to Automation. It was a challenge to satisfy these related but, at the same time, diverse requirements.

The approach was to **identify a manageable number of didactic modules**, which could be used in all their extent or in parts to teach all the different courses included in the project. The process to do that was the following:

- 1. Design a spreadsheet to gather and represent information, about topics from Needs Analysis and corresponding teaching hours (theory and lab), for each course.
- 2. Tables were filled out by each Thai partner. They distributed the hour loud among topics relevant for each course.
- 3. Analysis of the results allowed a detailed identification of number theoretical and practical teaching hours in the relevant topics for each course.

3 Topics and Hours in Curricula (Original information from ETAT project - Example P11)

Partner № Name Acronym Staff member Real/simulation	P11 King Mongkut's Univers KMUTNB Saman Kumpakeaw		:h Bangkok	Hours to update 26 New course hours 100			
process model	LOGISTICS & TRAFFIC / ENVIE						
Course Center		Industrial Robotics	Machine Learning with Big Data	Automatic Guidance Systems in Industry	Automatic Traffic/ Logistic Solution	Modern Automation Technology in Vehicles	Scalable Manufacturing Execution System (MES) for Industry
Update/New		NEW	NEW	NEW	NEW	UPDATE	UPDATE
Level		Intermediate	Intermediate or advanced	termediate or advance	Intermediate or advanced	Beginner of intermediate	Intermediate
ECTS	2	2	2	2	2	2	2
% Update	100%	100%	100%	100%	100%	70%	60%
Hours to update	20	20	20	20	20	14	12
THEORY (h) PRACTICE (h)							
Students	100	50	50	50	50	50	50
Teachers	10	10	10	10	10	10	10
Equipments	ETAT Smart Labs PLC with IoT features Sensors and actuators Multimeter/Oscilloscopes Computer	ETAT Smart Labs PLC with IoT features Sensors and actuators Robot manipulators Simulation programs Multimeter/Oscilloscopes Computer	Computers Sensors and actuators for PBL-projects	Computers		Computers Simulation software Sensors and actuator for automatic systems of EV	ETAT Smart Labs Computers Simulation software

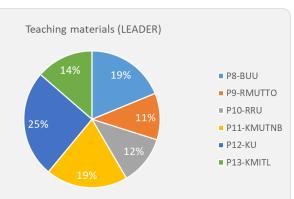
3

Procedure for Didactic Modules Definition

Topics and Hours in Curricula (Collecting information of topics - Example P8)

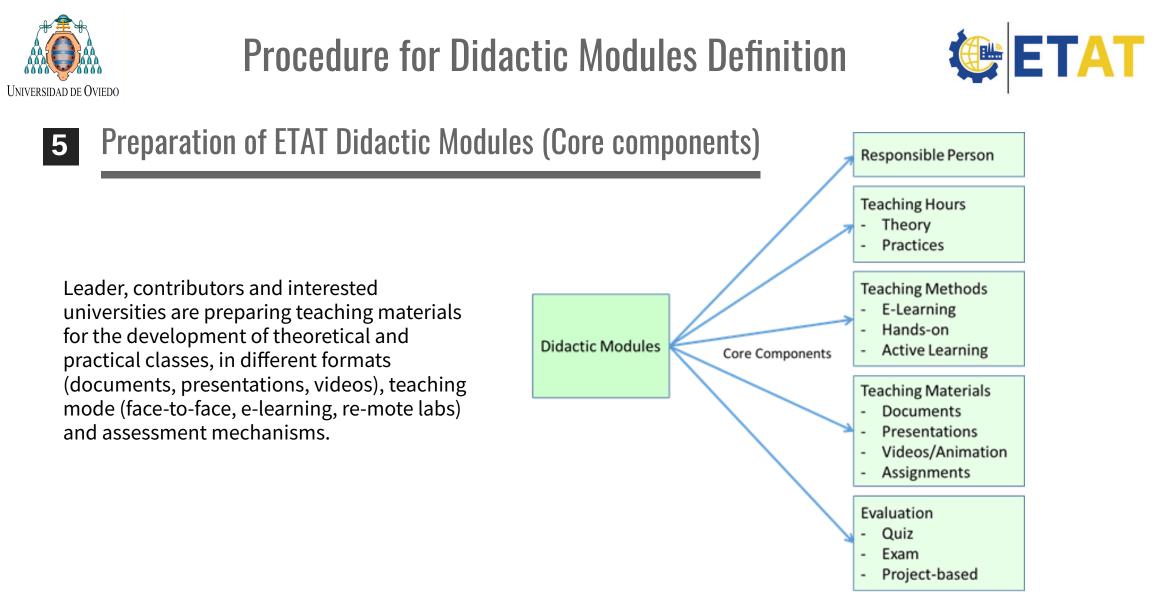
From ETAT project	Please, fill in the yellow cells, if applicable	e							
Partner Nº	P8						Hours to update		
Name	Burapha University						120		
Acronym	BUU								
Staff member	Prajaks Jitngernmadan								
Real/simulation process model	SMART FACTORY								
Course	Hands-on Automation Technology for SCADA System	24	24	Industrial Embedded Systems for Machine Control and Monitoring	18	18	Industrial Automation	18	18
			ours			ours			urs
WP3. D3.4: TEACHING MATERIALS		THEO	PRAC		THEO	PRAC		THEO	PRAC
(lessons, practices)									
from Needs Analysis									
	Introduction to automation technology;			Introduction to industrial embedded			Industrial sequence control; components and		
Specific content	programmable logic control usage, plc			systems, embedded microcontrollers;			structure of the industrial automation;		
	programming, input data, output data;			embedded programming; real-time operating			programmable logic controllers (PLC); basic		
Programming									
IEC 61131-3	IEC 61131-3 basics and examples	2	2	IEC 61131-3 basics and examples	2	2	IEC 61131-3 basics	1	2
HMI/SCADA systems	HMI/SCADA systems (practical)	6	6				HMI/SCADA system	3	3
Python	Programming Python	6	6	Programming Python	2	2	Programming Python	1	2
C/C++/C#	ŧ			Programming C/C++/C#	2	2			
Robots/ROS programming									
Matlab/Simulink									
Java/JavaScript									
Node-Red	Programming Node-Red	2	2	Programming Node-Red	2	2			
SQL Database									
Industrial communications									
Centralized IO									
Ethernet/IP	Ethernet/IP configuration	2	2	Ethernet/IP configuration	1	1	Ethernet/IP configuration	1	2
Modbus TCP/RTU							Modbus TCP configuration	1	2
PROFINET	Profinet standard and configuration		2				Profinet configuration	1	2
IO-Link									
OPC standard							OPC configuration	2	1
Profibus									
AS-Interface									
DeviceNet									

Didactic Modules Distribution (First teaching materials list)


NP3. D3.4 & D3.5: Tead	ching mate	rials						
				Но	urs	Thai partners		
	THEO (D3.4)	PRAC (D3.5)	Teaching materials	THEO (D3.4)	PRAC (D3.5)	LEADER	Contributor	Interested
			IEC 61131-3 + Centralize IO	4	8	P11-KMUTNB	P10-RRU	P8-BUU
			HMI/SCADA, OPC, OPC UA, MES	12	9	P8-BUU	P11-KMUTNB	P9-RMUTTO
			Python	6	8	P10-RRU	P8, P11, P12	P9, P13
Programming	34	44	C/C++/C#	2	2	P8-BUU	P9-RMUTTO	P10, P11, P13
Frogramming	54		Robot/ROS programming	4	8	P11-KMUTNB		
			Matlab/Simulink		2	P9-RMUTTO		
			Java/JavaScript + Node-Red	3	5	P8-BUU	P11-KMUTNB	P9, P12, P13
			SQL Database	3	2	P12-KU		
			Ethernet/IP	2	2	P8-BUU	P9-RMUTTO	P10 to P13
			Modbus TCP	2	3	P8-BUU	P11-KMUTNB	P9-RMUTTO
			PROFINET	1	2	P8-BUU	P13-KMITL	P9, P10
Integration	14	19	IO-Link		1	P9-RMUTTO		
integration		15	IoT comm. (MQTT, REST API)	5	5	P8-BUU	P10-RRU	P9, P13
			Wi-Fi	1	2	P11-KMUTNB	P10-RRU	P8, P9
			Google Cloud	2	3	P13-KMITL	P12-KU	P11-KMUTNB
			Proficloud	1	1	P8-BUU	P10-RRU	P9, P13
			Industry 4.0/Ciber Systems & IoT	3	2	P10-RRU	P8-BUU	P9, P11, P13
			Advanced PLC Prog. PLCnext	3	3	P8-BUU	P12-KU	P9, P11
Topics in Industry 4.0	21	17	Feedback Control Technology	1	1	P9-RMUTTO		
			Robotics	5	2	P9, P11		
			Big Data Analysis	9	9	P12-KU		P11, P13
			Smart Factory (BUU)	5	4	P8, P12		
			City & Home (KU, KMITL)		5	P13-KMITL		
Real/Sim. Process Model	12	27	Agriculture - Smart Factory (RRU)	4	4	P10-RRU		
		27	Robotics (RMUTTO)	1	2	P9-RMUTTO		
			Logistics & Traffic (KMUTNB)	2	9	P11-KMUTNB		
			Environment & Energy (KMUTNB)		3	P11-KMUTNB		
			Data analysis	6	4	P12-KU		
			Process simulation	1	3	P13-KMITL		
			SAE Automation Level	1		P11-KMUTNB		
Other topics	13	11	Vision systems		1	P9-RMUTTO		
			Augmented/Virtual reality	1		P8-BUU		
			Digital twin	1		P8-BUU		
			Pattern recognition	3	3	P12-KU		
	94	118		94	118			
	44%	56%			-10			
Total of hours	2	12						
Total of hours	2	12						

4 Final Didactic Modules Distribution

Hours								Final distribution			
ID	Didactic modules (Teaching materials)	THEO (D3.4)	PRAC (D3.5)	THEO hours	PRAC hours	Total of Hours	LEADER	Contributor	Interested		
M1	HMI/SCADA systems	12	9				P8-BUU	P11-KMUTNB	P9-RMUTTO		
M2	IEC 61131 programming	5	9		79		P11-KMUTNB	P10-RRU	P8-BUU		
M3	Industrial communications	6	10				P11-KMUTNB	P8 BUU	P9 to P13		
M4	IoT and cloud technology	11	10	75		154	P13-KMITL	P8 to P13			
M5	Node-Red programming	3	5				P8-BUU	P11-KMUTNB	P9, P12, P13		
M6	Phyton programming	8	10				P10-RRU	P8, P11, P12	P9, P13		
M7	Robotics/ROS programming	9	8				P9-RMUTTO	P11-KMUTNB			
M8	Big data analysis and pattern recognition	21	18				P12-KU		P11, P13		
M9	PLCnext technology	3	3	3	3	6	РхС				
M10	ETAT Smart Lab equipment	2	2	2	2	4	WP4				
M11	Real/Sim. Process Model	4	4	4	4	8	P8 to P13				
						172					
				THEO hours	PRAC hours	Total of Hours					


- **5** Preparation of ETAT Didactic Modules
 - Core components

Core components of didactic modules include Responsible Person, Teaching Hours, Teaching Methods, Teaching Materials and Assessment/Evaluation

Leader, contributors and interested universities are preparing teaching materials for the development of theoretical and practical classes, in different formats (documents, presentations, videos), teaching mode (face-to-face, e-learning, re-mote labs) and assessment mechanisms.

• Control list

A control list has been developed to supervise the progress of this activity. Figure shows, as an example, the supervision of module M2, where it can be seen the state of each material detailed to the level of lessons.

Procedure for Didactic Modules Definition Preparation of ETAT Didactic Modules (Control list - Example P11)

ETAT Project

5

WP3 - PREPARATION	Status overview
-------------------	-----------------

Module number:	M2
Name of the module:	IEC 61131-3 programming
Thai LEADER:	P11-KMUTNB (P10-RRU, P8

P11-KMUTNB (P10-RRU, P8-BUU)

Contact person:

Saman Kumpakeaw

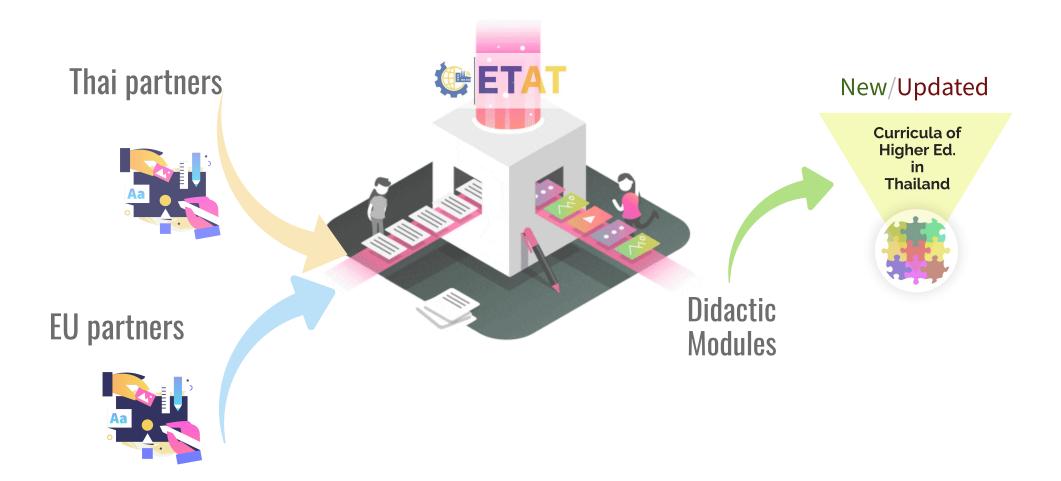
Total numbert of hours:	14
Theory:	5
Practice:	9

Email: saman.k@eat.kmutnb.ac.th

Focus Course?

Yes

Due Date: 15 May 2022 Progress untill now = 40% (for lecture)


			Pdf/Docx/I	Documents	Presentation/pptx		Video		Que	stions
				_			E-Learning			
			Thai	English	Thai	English	Thai	English	Thai	English
	THEORY	Hours								
Lecture:	Overview of PLCs and the IEC 61131	0,5	In Progress	Revised	Not Started	Completed	Not Started		Not Started	Completed
	IEC 61131-3: data typesand prog. structure	1	In Progress	Revised	Not Started	Completed	Not Started		Not Started	Completed
	Ladder diagram (LD)	1	In Progress	Completed	Not Started	In Progress	Not Started		Not Started	In Progress
	Function block diagram (FBD)	1	Not Started	In Progress	Not Started	In Progress	Not Started		Not Started	In Progress
	Structured text (ST)	1	Not Started	Completed	Not Started	Completed	Not Started		Not Started	In Progress
	Sequential function chart (SFC)	0,5	Not Started	Revised	Not Started	Completed	Not Started		Not Started	Completed
	TOTAL	5								

			Lab Assignment		Project		Hands-on Workshop		Done Work	
			Face-to-Face		Face-to-Face		Face-to-Face		Face-to-Face	
			Thai	English	Thai	English	Thai	English	Thai	English
	PRACTICE	Hours								
Practice:	PLC hardware configuration	1	Completed				Completed		Not Started	Not Started
	IEC 61131-3 programming in LD with ETAT Smar	2	In Progress				In Progress		Not Started	Not Started
	IEC 61131-3 programming in FBD with ETAT Sma	2	Not Started				Not Started		Not Started	Not Started
	IEC 61131-3 programming in ST with ETAT Smar	2	In Progress				In Progress		Not Started	Not Started
	PLC hardware configuration (basic network con	1	Completed				Completed		Not Started	Not Started
	IEC 61131-3 programming in SFC with ETAT Sma	1	Not Started				Not Started		Not Started	Not Started
	TOTAL	9								

Procedure for Didactic Modules Definition Preparation of ETAT Didactic Modules (EU support, ERASMUS+)

Next Steps in ETAT Project

Matching Didactic Modules and Curricula

Deployment and Implementation of Training Activities

Validation, Quality Control and Improvement

Training Acreditation

International Education Network – a PHOENIX CONTACT Initiative

7-8 June, 2022 / European Annual EduNet Conference 2022, Paris

Conclusions and Outlook

- 1. In this work we present how international collaboration is an effective tool for updating curricula and developing teaching materials for Automation 4.0.
- 2. The approach we propose conforms to OBE (Outcomes-based Education) principles.
- 3. It is a process that covers from data collection (needs analysis, new curricula, ESL...) to didactic module preparation.
- 4. In the middle necessary topics are identified and grouped into didactic modules, which can then be used in learning courses.
- 5. With our ETAT didactic modules, Thai partners can update or create their courses easily. The didactic modules are selfcontained including learning materials, teaching methods, and assessment methods.
- 6. The next step of this work is to implement the created learning materials and collect the feedback.
- 7. With a suitable quality control and improvement method, the learning materials will suit the learners most. For the outcome of the didactic modules and also the course, the accreditation of the Automation 4.0 training will be needed.

THANK YOU!

Felipe Mateos - P3-UNIOVI Team

Co-funded by the Erasmus+ Programme of the European Union

"ETAT Education & Training for Automation 4.0 in Thailand" n° 610154-EPP-1-2019-1-DE-EPPKA2-CBHE-JP